Spinal cord injury-induced changes in breathing are not due to supraspinal plasticity in turtles (Pseudemys scripta).

نویسندگان

  • Stephen M Johnson
  • Robert J Creighton
چکیده

After occurrence of spinal cord injury, it is not known whether the respiratory rhythm generator undergoes plasticity to compensate for respiratory insufficiency. To test this hypothesis, respiratory variables were measured in adult semiaquatic turtles using a pneumotachograph attached to a breathing chamber on a water-filled tank. Turtles breathed room air (2 h) before being challenged with two consecutive 2-h bouts of hypercapnia (2 and 6% CO2 or 4 and 8% CO2). Turtles were spinalized at dorsal segments D8-D10 so that only pectoral girdle movement was used for breathing. Measurements were repeated at 4 and 8 wk postinjury. For turtles breathing room air, breathing frequency, tidal volume, and ventilation were not altered by spinalization; single-breath (singlet) frequency increased sevenfold. Spinalized turtles breathing 6-8% CO2 had lower ventilation due to decreased frequency and tidal volume, episodic breathing (breaths/episode) was reduced, and singlet breathing was increased sevenfold. Respiratory variables in sham-operated turtles were unaltered by surgery. Isolated brain stems from control, spinalized, and sham turtles produced similar respiratory motor output and responded the same to increased bath pH. Thus spinalized turtles compensated for pelvic girdle loss while breathing room air but were unable to compensate during hypercapnic challenges. Because isolated brain stems from control and spinalized turtles had similar respiratory motor output and chemosensitivity, breathing changes in spinalized turtles in vivo were probably not due to plasticity within the respiratory rhythm generator. Instead, caudal spinal cord damage probably disrupts spinobulbar pathways that are necessary for normal breathing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-dependent spinal cord plasticity in health and disease.

Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input from the periphery and the brain, this plasticity plays an important role in the acquisition and maintenance of motor skills and in the effects of spinal cord injury and other central nervous system disorders. The responses of the isolated spinal cord to sensory input display sensitization, long-term potent...

متن کامل

The fate of neurons after traumatic spinal cord injury in rats: A systematic review

Objective(s): To reach an evidence-based knowledge in the context of the temporal-spatial pattern of neuronal death and find appropriate time of intervention in order to preserve spared neurons and promote regeneration after traumatic spinal cord injury (TSCI). Materials and Methods: The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided...

متن کامل

Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature...

متن کامل

Respiratory motor recovery after unilateral spinal cord injury: eliminating crossed phrenic activity decreases tidal volume and increases contralateral respiratory motor output.

By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was me...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 289 6  شماره 

صفحات  -

تاریخ انتشار 2005